当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Topologically expansive decreasing Lorenz maps with a hole at the discontinuity

发布日期:2026-01-06点击数:

报告人:孙运 讲师(武汉理工大学)

时间:2026年01月10日 15:30-

地址:理科楼LA104


摘要:Let f be a topologically expansive decreasing Lorenz map and c be the discontinuity point. The survivor set is denoted as $S_{f}(H):=\{x\in[0,1]: f^{n}(x)\notin H, \forall n\geq 0\}$, where $H$ is an open subinterval.  By combinatorial tools, we obtain the admissible condition for the kneading invariants of expansive decreasing Lorenz maps. Moreover, let $a$ be fixed, when $f$ has an ergodic a.c.i.m., we prove that the topological entropy function  is a devil's staircase. At the special case that f being a negative $\beta$-transformation, using the Ledrappier-Young formula, the Hausdorff dimension function  is a devil's staircase. All the results can be extended to the case that b is fixed.


邀请人:孔德荣


欢迎广大师生积极参与!


关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。