当前位置: 首页 > 新闻中心 > 学术活动 > 正文

A winning approach to the intersections of twisted non-recurrent sets with fractals

发布日期:2026-01-06点击数:

报告人:李兵 教授(华南理工大学)

时间:2026年01月10日 14:30-

地址:理科楼LA104


摘要:In the talk, we show that if $S\subseteq\R^d$ is hyperplane absolute winning on a closed hyperplane diffuse set $L\subseteq\mathbb{R}^d$, then $\dim_{\rm H} S\cap K=\dim_{\rm H} K$ for any irreducible self-conformal set $K\subseteq L$ without assuming any separation condition on $K$.  The result is then applied to obtain the Hausdorff dimension of intersections between irreducible self-conformal sets and twisted non-recurrent sets $\mathrm{N} (T, \mathcal{G})$ defined as

   \begin{equation*} \mathrm{N}(T,\mathcal{G}):=\left\{\mathbf{x}\in[0,1]^d:\liminf_{n\to\infty}\|T^n(\mathbf{x})-g_n(\mathbf{x})\|>0\right\},

   \end{equation*}

     where $T:[0,1]^d\to[0,1]^d$ belongs to a broad class of product maps, $\mathcal{G}:=\{g_n\}_{n\in\mathbb{N}}$ is a sequence of self-maps on $[0,1]^d$ with uniform Lipschitz constant and $\|\cdot\|$ denotes the maximal norm in $\mathbb{R}^d$. When $T$ is the $\beta$-transformation on $[0,1]$, it provides a positive answer to a question raised informally by Broderick, Bugeaud, Fishman, Kleinbock and Weiss (Math. Res. Lett., 2010). For the case $T$ is a $d\times d$ diagonal matrix transformations, our results provide a partial answer asked in a paper of Li, Liao, Velani and Zorin (Adv. Math., 2023). A natural generalization to non-autonomous setting is also obtained. This is a joint work with Junjie Huang, Bo Wang and Na Yuan.



邀请人:孔德荣


欢迎广大师生积极参与!


关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。