报告人:李文侠 教授(华东师范大学)
时间:2025年05月12日 10:00-
地点:理科楼LA104
摘要:Associated to the L\"{u}roth expansion of an irrational number $\bar{x}\in (0, 1)$ is a sequence $x=\{x_i\}\in {\mathbb N}^{\mathbb N}$. Then for each $n$, one can get an infinite probability vector $\Pi(x|n)=(p_{i,n})_{i\in \mathbb N}$
where $p_{i,n}$ is the frequency of $i$ occurring in the prefix of $\{x_i\}$ of length $n$. Let $ A(\{\Pi(x|n)\}_{n\in \mathbb N})$ be the set of accumulation points of
the sequence $\{\Pi(x|n)\}_{n\in \mathbb N}$. Given a set $C$, let
$$
\Omega_{=C}=\left \{x \in {\mathbb N}^{\mathbb N}:
A(\{\Pi(x|n)\}_{n\in \mathbb N})= C\right \}\;\;\text{and}\;\;
\Omega_{\subseteq C}=\left\{x\in {\mathbb N}^{\mathbb N}:
A(\{\Pi(x|n)\}_{n\in \mathbb N})\subseteq C\right\}.
$$
In this talk, we introduce how to determine the Hausdorff dimensions of $\pi (\Omega_{=C})$ and $\pi (\Omega_{\subseteq C})$.
邀请人:数学研究中心
欢迎广大师生积极参与!