当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Robust Tensor Recovery via A Nonconvex Approach with Ket Augmentation and Auto-Weighted Strategy

发布日期:2025-04-22点击数:

报告人:凌晨 教授(杭州电子科技大学)

时间:2025年04月25日 16:00-

地点:理科楼LA103


摘要:In this talk, we introduce a nonconvex tensor recovery approach, which employs the powerful ket augmentation technique to expand a low order tensor into a high-order one so that we can exploit the advantage of tensor train (TT) decomposition tailored for high-order tensors. Moreover, we define a new nonconvex surrogate function to approximate the tensor rank, and develop an auto-weighted mechanism to adjust the weights of the resulting high-order tensor’s TT ranks. To make our approach robust, we add two mode-unfolding regularization terms to enhance the model for the purpose of exploring spatio-temporal continuity and self-similarity of the underlying tensors. Also, we propose an implementable algorithm to solve the proposed optimization model in the sense that each subproblem enjoys a closed-form solution. A series of numerical results demonstrate that our approach works well on recovering color images and videos.

This is a joint work with W. H. Xie, H. J. He and L. H. Zhang.


邀请人:李寒宇


欢迎广大师生积极参与!



关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。