当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Semiparametric modeling for heterogeneous data via deep generative learning

发布日期:2024-12-26点击数:

报告人:刘旭 教授(上海财经大学)

时间:2024年12月27日 10:30--

地点:数统学院LD718


摘要:One of the most fundamental tasks in statistics and artificial intelligence (AI) is to learn how the explanatory variable X affects the response variable Y, which can be naturally characterized as learning the conditional distribution P of Y given X. To completely understand how X affects Y, the conditional distribution P is essential. Our approach simultaneously estimates the high-dimensional regression parameter and the conditional generator using a generative learning framework, where the conditional generator is a function that can generate samples from a conditional distribution. We establish the non-asymptotic upper bound for estimation errors of generator and regression coefficients. Extensive simulation studies are conducted to show the good performance in the finite samples. A case study is also analyzed to demonstrate the well-performed applications.


邀请人: 周国立


欢迎广大师生积极参与!

关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。