报告人:陈振庆(美国华盛顿大学)
时间:2024年06月19日 08:30
地址: 理科楼 LA103
摘要:The classical boundary Harnack principle asserts that two positive harmonic functions that vanish on a portion of the boundary of a smooth domain decay at the same rate. It is well known that scale invariant boundary Harnack inequality holds for Laplacian \Delta on uniform domains and holds for fractional Laplacians \Delta^s on any open sets. It has been an open problem whether the scale-invariant boundary Harnack inequality holds on bounded Lipschitz domains for Levy processes with Gaussian components such as the independent sum of a Brownian motion and an isotropic stable process (which corresponds to \Delta + \Delta^s).
In this talk, I will present a necessary and sufficient condition for the scale-invariant boundary Harnack inequality to hold for a class of non-local operators on metric measure spaces through a probabilistic consideration. This result will then be applied to give a sufficient geometric condition for the scale-invariant boundary Harnack inequality to hold for subordinate Brownian motions having Gaussian components on bounded Lipschitz domains in Euclidean spaces. This condition is almost optimal and a counterexample will be given showing that the scale-invariant BHP may fail on some bounded Lipschitz domains with large Lipschitz constants.
Based on joint work with Jieming Wang.
简介:陈振庆教授是国际知名概率论学者。美国华盛顿大学(西雅图)数学系教授,1992年在美国华盛顿大学(圣路易斯)获博士学位,曾在美国的加利福尼亚大学(圣地亚哥)和康奈尔大学工作;1998年起在位于华盛顿州西雅图市的华盛顿大学数学系工作至今。在包括国际顶尖数学和概率期刊《欧洲数学学会杂志》(Journal of the European Mathematical Society)、《概率年刊》(Annals of Probability)、《概率论及其相关领域》(Probabiity Theory and Related Fields)等学术期上发表论文200余篇,著有两本专著。被列为全球Top 2%顶尖科学家。陈振庆教授是国际数理统计学会会士和美国数学学会会士。 从2016年起任国际数学综合性期刊《位势理论》的主编,是《美国数学学会通讯》(Proceedings ofthe American Mathematical Society)应用数学和概率统计方向的协调编辑(Coordinating ditor) 及多个国际数学和概率期刊的编委。
邀请人:周国立