报告人: 陈 卿 (厦门理工学院)
日 期: 2019年12月20日
时 间: 16:00
地 点: 理科楼 LA106
摘 要: This talk is concerned with the problem of energy conservation for the two-dimensional inhomogeneous Euler equations. In particular, two types of sufficient conditions are obtained. The first one assumes Lp-regularity on the spatial gradient of the density and the vorticity. The second one removes the regularity condition on the spatial gradient of the density while requires certain time regularity of the vorticity. Furthermore, we phrase the energy
spectrum in terms of the Littlewood-Paley decomposition and show that the energy flux vanishes as the dyadic exponent goes to infinity.
报告人简介:陈卿,理学博士,现为厦门理工学院副教授,近年来在JDE,KRM, P ROY SOC EDINB A等杂志上发表论文数篇,主持国家自然科学基金1项。
学院联系人: 穆春来 王华桥
欢迎广大师生积极参与!