报告人: 洪绍方(四川大学)
日 期: 2019年12月13日
时 间: 16:00
地 点: 理科楼 LD302
摘 要: Let $n$ be an integer. In 1915,Theisinger proved that the $n$-th harmonic sum $1+\frac{1}{2}+...+\frac{1}{n}$ is an integer if and onlyif $n=1$. In 1923, Nagell extended Theisinger's theorem from the sequence of positive integers to general arithmetic progressions by showing that if $a$ and $b$ are positive integers and $n\ge 2$, then the reciprocal sum
$\sum_{i=0}^{n-1}\frac{1}{a+bi}$ is an integer if and only if $n=a=1$. In 1946, Erd\H{o}s and Niven generalized Nagell's theorem by establishing a similar result on the integrality of the elementary symmetric functions of $\frac{1}{a}, \frac{1}{a+b}, ..., \frac{1}{a+(n-1)b}$.
In the recent years, some authors including the speaker extended Erd\H{o}s and Niven's result from the arithmetic progressions to arbitrary nonnegative integer coefficients polynomial sequences. In this talk, we will speak about recent progresses on this interesting topic.
报告人简介:洪绍方,四川大学数学学院教授、博士生导师,教育部新世纪优秀人才, 四川省学术和技术带头人,任国际数学期刊AIMS Math.和Journal of Math.等编委, 主要从事数论、算术几何和编码等方面的研究, 先后负责主持国家自然科学基金和教育部博士点基金等10多个纵向项目. 已经在Proc. Edinb. Math. Soc., Forum Math., Proc. Amer. Math. Soc., Acta Math. Hungar., J. Aust. Math. Soc., Comptes Rendus Math., Arch. Math., J. Number Theory, J. Algebra, Ramanujan J, Acta Arith., Finite Fields Appl.和Science China Math.等国内外重要数学期刊上发表论文百余篇,其中SCI收录论文近70篇. 先后访问了美国,法国,以色列,日本和韩国等国以及台湾和香港地区的一些著名高校和研究所,于2013年参加了在台湾大学举行的第六届国际华人数学家大会,并作45分钟的邀请报告。已经培养毕业硕士60名,毕业博士10多名,其中多人已经晋升教授。
学院联系人: 傅士硕
欢迎广大师生积极参与!