当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Survivor sets of Gauss map with a hole at $1$

发布日期:2025-12-25点击数:

报告人:廖灵敏 教授 (武汉大学)

时间:2026年01月08日 10:30-

地址:理科楼LA104


摘要:Given $\alpha \in [0,1]$, we study the set of numbers sharing identical representation of regular continued fractions and $\alpha$-continued fractions. It turns out that such set have the same Hausdorff dimension as that of a survivor set of the Gauss map with a hole at $1$, i.e., the set of points $x$ such that all the iterations under Gauss map of $x$ is less than $\alpha$. We show that the function of the Hausdorff dimensions of such sets associated to $\alpha$ is increasing and locally constant almost everywhere. Further, we show that it is not continuous at $0$, which is a new phenomenon in the study of open dynamical systems. This is a joint work with Cheng LIU.


邀请人:数学研究中心


欢迎广大师生积极参与!




关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。