当前位置: 首页 > 新闻中心 > 学术活动 > 正文

The spectral eigenvalue set and Beurling dimension on self-similar measures

发布日期:2025-12-10点击数:

报告人:陆正义 讲师(湖南大学)

时间:2025年12月16日 09:30-

腾讯会议ID:405 830 573


摘要:In this talk, we study harmonic analysis in self-similar measures. Let m be the self-similar measures associated to Hadamard triples. We prove that the integer set T, consisting of all integers t for which (q,D,tL) remains a Hadamard triple, contains all integers coprime to q and itself constitutes a spectral eigenvalue set for m. Moreover, for any prescribed Beurling dimension s between zero and the Hausdorff dimension of the measure’s support, we show that the corresponding spectra have the cardinality of the continuum. This presentation will focus on outlining the methods for constructing spectra.


邀请人:数学研究中心


欢迎广大师生积极参与!



关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。