报告人:侯浩杰 博士后(北京理工大学)
时间:2025年08月28日 15:00-
地点:理科楼LA103
摘要:Consider a subcritical branching random walk $\{Z_k\}_{k\geq 0}$ with offspring distribution $\{p_k\}_{k\geq 0}$ and step size $X$. Let $M_n$ denote the rightmost position reached by $\{Z_k\}_{k\geq 0}$ up to generation $n$ and define $M := \sup_{n\geq 0} M_n$. In this talk, we give asymptotics of tail probability of $M$ under optimal assumptions $\sum^{\infty}_{k=1}(k\log k)p_k<\infty$ and $\mathbb{E}[Xe^{\gamma X}]<\infty$, where $\gamma >0$ is a constant such that $\mathbb{E}[e^{\gamma X}]=\frac{1}{m}$ and $m=\sum_{k=0}^\infty kp_k\in (0,1)$. Moreover, we confirm the conjecture of Neuman and Zheng [Probab. Theory Related Fields, 2017] by establishing the existence of a critical value $m\mathbb{E}[X e^{\gamma X}]$ such that
\begin{align}
\lim_{n\to\infty} \mathbb{P}(M_n\geq cn\big| M\geq cn)=\begin{cases}
&1,~c\in\big(0,m\mathbb{E}[Xe^{\gamma X}]\big); \\
&0,~c\in\big(m\mathbb{E}[Xe^{\gamma X}], \infty\big).\end{cases}
\end{align}
Finally, we extend these results to the maximal displacement of branching random walks with killing. Based on an ongoing joint work with Shuxiong Zhang (Anhui Normal University).
邀请人:数学研究中心
欢迎广大师生积极参与!