当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Efficient algorithms for Tucker decomposition via approximate matrix multiplication

发布日期:2025-01-08点击数:

报告人:魏益民 教授 (复旦大学)

时间:2025年1月15日    16:00-    

地点:理科楼LA103

 

摘要:This paper develops fast and efficient algorithms for computing Tucker decomposition with a given multilinear rank. By combining random projection and the power scheme, we propose two efficient randomized versions for the truncated high-order singular value decomposition (T-HOSVD) and the sequentially T-HOSVD (ST-HOSVD), which are two  common algorithms for approximating Tucker decomposition. To reduce the complexities of these two algorithms, fast and efficient algorithms are designed by combining two algorithms and approximate matrix multiplication. The theoretical results are also achieved based on the bounds of singular values of standard Gaussian matrices and the theoretical results for approximate matrix multiplication. Finally, the efficiency of these algorithms are illustrated via some test tensors from synthetic and real datasets.



邀请人: 李寒宇

 

欢迎广大师生积极参与!

 

 

关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。