当前位置: 首页 > 新闻中心 > 学术活动 > 正文

College Colloquium--数据筛选-从算法到理论

发布日期:2024-11-19点击数:

报告人:孟德宇 教授 (西安交通大学)

时间:2024年11月24日 15:00-

地点: 理科楼LA103


摘要:现有深度学习方法的有效性依赖于对训练数据集的高质量要求,当训练集呈现蕴含复杂标记噪声、类别不均衡等数据偏差问题时,其有效性往往不能得以保证,这被称之为深度学习的鲁棒性学习问题。这一问题已经严重制约了深度学习在现实场景中的有效应用,是领域亟需面对的瓶颈问题。本报告将特别针对样本筛选这一类典型的处理数据偏差的方法论展开讨论,介绍该方法论从针对少量数据偏差类型的传统手工赋权设定方法,如何演进到更为前沿的大模型背景下针对更多数据偏差类型的自动化赋权方法。特别地,将深入讨论在该方法论背后蕴含的元学习思想本质,挖掘其有效性理论内涵,从而揭示其可能对现实场景中复杂鲁棒深度学习问题的潜在泛化可用性。


邀请人:李寒宇


欢迎广大师生积极参与!



关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。