报告人:陈昕昕(北京师范大学)
时间:2024年07月15日 10:00
地址:理科楼LA103
摘要:We consider a continuous-time branching Brownian motion (BBM) on the real line which spreads with speed 2. Its x -level set counts the number of particles located above xt at time t. The typical behavior of x-level set for 0 < x < 2 is known by Biggins [2] and Glenz et al [3]. We study the precise large deviation of level sets, which improves the previous result of Aidekon et al[1]. We also discuss the behaviors of BBM conditioned on large x-level set. This is based on joint works with L. de Raph´elis and Heng Ma.
[1] E. Aıdekon, Yueyun Hu and Zhan Shi (2019). Large deviations for level sets of a branching Brownian motion and Gaussian free fields, J. Math. Sci., New York 238(4), 348-365.
[2] J. D. Biggins (1992). Uniform Convergence of Martingales in the Branching Random Walk, Ann. Probab., 20(1), 137-151.
[3] G. Glenz, N. Kistler and M. Schmidt (2018). High points of branching Brownian motion and McKean’s Martingale in the Bovier-Hartung extremal process, ECP, 23, 1-12.
简介:陈昕昕,北京师范大学教授,2009年6月于清华大学数学系获得理学学士学位,2014年5月在法国巴黎六大获得理学博士学位,2014年至2021年在法国里昂一大工作。2022-至今为北京师范大学教授并主持“统计物理中的随机数学:相变与极限行为”的国家重点研发计划青年科学家项目,主要研究领域包括分枝过程,随机游走。
邀请人:数学研究中心
欢迎广大师生积极参与!