当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Structure-preserving algorithms for the Bethe--Salpeter eigenvalue problem

发布日期:2024-06-21点击数:

报告人:邵美悦(复旦大学)

时间:2024年06月26日 10:00

地址:理科楼LA106


摘要:In a molecular system, the excitation of an electron is obtained by solving the so-called Bethe--Salpeter equation (BSE). Discretization of the Bethe--Salpeter equation leads to a dense non-Hermitian matrix eigenvalue problem with a special 2-by-2 block structure. In principle, all excitation energies, i.e., all positive eigenvalues of the BSE Hamiltonian, are of interest. This is challenging in practice because the dimension of the BSE Hamiltonian depends quadratically on the number of electrons in the system. We developed a parallel structure preserving algorithm that computes all eigenpairs of the BSE Hamiltonian efficiently and accurately. In some circumstances, instead of computing each individual eigenpair, we need to compute the optical absorption spectrum, which is a frequency dependent matrix functional of the BSE Hamiltonian. We developed a Lanczos-type algorithm to efficiently compute the absorption spectrum without diagonalizing the BSE Hamiltonian. In this talk we will present these structure preserving algorithms, as well as theories on some closely related problems.


简介:邵美悦,复旦大学大数据学院青年研究员,博士生导师,国家级青年人才,主要研究领域为数值线性代数、高性能计算、量子力学计算。2014年毕业于瑞士洛桑联邦理工学院,获得计算数学博士学位。2014年至2019年在美国劳伦斯伯克利国家实验室从事研究工作,先后担任博士后研究员和项目科学家。20195月进入复旦大学大数据学院工作。


邀请人:李寒宇


欢迎广大师生积极参与!



关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。