报告人:司飞(北京大学)
时间:2024年04月29日 14:00-
地点:数统学院LD302
摘要:K-stability for a Fano manifold is an algebraic-geometric condition to guarantee the existence of K¨ahler-Einstein metric on itself due to YauTian-Donaldson’s conjecture. Later algebraic-geometers realise that K-stability should be a good notation to construct a satisfactory moduli space for Fano varieties and then are aimed to develop an algebraic theory to deal with the moduli problem of K-semistable Fano varieties. Recently the breakthrough work of Liu-Xu-Zhuang on properness of moduli space of K-semistable Fano varieties finishes the last part of the theory. This leads to the existence of K-moduli space parametrizing S-equivalence classes of K-semistable Fano varieties. In the first part of the two talks, I will give an introduction to the algebraic K-stability theory to construct K-moduli spaces and wall-crossing phenomenon in K-moduli spaces due to Ascher-DeVleming-Liu.
简介:司飞,2021年在复旦大学上海数学中心取得博士学位,现为北京大学国际数学研究中心博士后;研究方向为代数几何,尤其是与模空间相关的课题。
邀请人:数学研究中心
欢迎广大师生积极参与!