报告人:周晓华 (北京大学)
时间:2021年6月15日9:00开始
地点:理科楼LA107
摘要:In this talk, I introduce a new semi-parametric modeling method for heterogeneous treatment effect estimation and individualized treatment selection using a covariate-specific treatment effect (CSTE) curve with high-dimensional covariates. The proposed method is quite flexible to depict both local and global associations between the treatment and baseline covariates, and thus is robust against model mis-specification in the presence of high-dimensional covariates. We also establish the theoretical properties of our proposed procedure. I will further illustrate the performance of the proposed method by simulation studies and analysis of a real data example. This is a joint work with Drs. Guo and Ma at University of California at Riverside.
简介:周晓华,1991年于美国俄亥俄州立大学获哲学博士(统计学)学位;1991.8-1993.7于美国哈佛大学做博士后;1993.8-2002.8于美国印第安那大学医学院生物统计室任助理教授、副教授,2003.8-2018.08于美国西雅图华盛顿大学公共卫生学院生物统计系任教授。周教授于2016年8月开始担任北京大学讲席教授、北京国际数学研究中心生物统计及生物信息实验室主任。现担任国际生物统计学会中国分会理事长、中国数学会医学数学专业委员会主任委员等职务。
邀请人:穆春来
欢迎广大师生积极参与!