报告人:程新跃(重庆师范大学)
时间:2021年6月11日10:30开始
地点:理科楼LA106
摘要:In this talk, we establish some important inequalities under a lower weighted Ricci curvature bound on Finsler manifolds. Firstly, we obtain a sharp Poincare-Lichnerowicz inequality by using integrated Bochner inequality, from which we obtain a sharp lower bound for the first eigenvalue on the Finsler manifolds. Then we establish a relative volume comparison of Bishop-Gromov type. As one of the the applications, we obtain an upper bound for volumes of the Finsler manifolds. Finally, when the S-curvature is boubded on the whole manifold, we obtain a theorem of Bonnet-Myers type on Finsler manifolds.
简介:程新跃,重庆师范大学教授,重庆市学术技术带头人,研究方向为整体微分几何,已在国内外重要学术期刊发表论文90余篇,由德国Springer出版社与科学出版社联合出版学术专著一部,由科学出版社出版研究生教材一部,其研究成果获重庆市自然科学二等奖。
邀请人:穆春来 周云华
欢迎广大师生积极参与!