报告人:季利均(苏州大学)
时间:2021年4月16日10:30开始
腾讯会议ID:539 242 689(无密码)
摘要:Let G be an abelian group of order v. A Steiner quadruple system of order v (SQS(v)) (G, B) is called symmetric K-invariant if for each B∈B, it holds that B+g∈B for each g∈G and B=-B+g’ for some g’∈G. When the Sylow 2-subgroup of G is cyclic, Munemasa and Sawa gave a necessary and sufficient condition for the existence of a symmetric G-invariant SQS(v) (2012), which is a generalization of a necessary and sufficient condition for the existence of a symmetric cyclic SQS(v) by Piotrowski (1985). In this talk, we give that a symmetric G-invariant SQS(v) exists if and only if v≡ 2,4 mod 6, the order of each element of G is not divisible by 8 and there exists a symmetric cyclic SQS(2p) for any odd prime divisor p of v.
简介:季利均,苏州大学数学科学学院教授,主要研究方向为组合设计与组合编码。作为主要成员参与完成两项国家自然科学基金重点项目,主持完成一项国家自然科学基金优秀青年项目,获国际组合数学及其应用协会(ICA,Institute of Combinatorics and its Applications)2015年度霍尔(Hall)奖。
邀请人:傅士硕
欢迎广大师生积极参与!