当前位置: 首页 > 新闻中心 > 学术活动 > 正文

L^2 methods in infinite dimensional spaces I & II

发布日期:2021-04-20点击数:

报告人:余佳洋(四川大学)

时间:2021年4月23日16:00和4月24日16:00 

地点数统学院LD402和LD302


摘要:The classical $L^2$ estimate for the $\overline{\partial}$ operators  is a basic tool in complex analysis of several variables. Naturally, it is expected to extend this estimate to infinite dimensional complex analysis, but this is a longstanding unsolved problem, due to the essential difficulty that there exists no nontrivial translation invariance measure in the setting of infinite dimensions. The main purpose in this series of work is to give an affirmative solution to the above problem, and apply the estimates to the solvability of the infinite dimensional $\overline{\partial}$ equations. In this first part, we focus on the simplest case, i.e., $L^2$ estimates and existence theorems for the $\overline{\partial}$ equations on the whole space of $\ell^p$ for $p\in [1,\infty)$. The key of our approach is to introduce a suitable working space, i.e., a Hilbert space for $(s,t)$-forms on $\ell^p$ (for each nonnegative integers $s$ and $t$), and via which we define the $\overline{\partial}$ operator from $(s,t)$-forms to $(s,t+1)$-forms and establish the exactness of these operators, and therefore in this case we solve a problem which has been open for nearly forty years.


简介:余佳洋,四川大学数学系。主要研究方向是泛函分析。


邀请人:王子鹏


欢迎广大师生积极参与!


关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。