报告人:雷力(浙江大学)
时间:2021年4月29日14:30开始
地点:数统学院LD202
摘要:In this talk,we will discuss rigidity problem of ancient solutions of the mean curvature flow with arbitrary codimension in space forms. A solution to the mean curvature flow is called ancient if it is defined on a time interval (-∞,T). We first prove that under a pointwise curvature pinching condition the ancient solution in a sphere is either a shrinking spherical cap or a totally geodesic sphere. Then we show that under certain pointwise curvature pinching condition the ancient solution in a hyperbolic space is a family of shrinking spheres. We also obtain a rigidity theorem for ancient solutions in a nonnegatively curved space form under an integral curvature pinching condition. This is joint work with Prof. H. W. Xu and Prof. E. T. Zhao.
简介: 雷力博士,师从于许洪伟老师,2016毕业于浙江大学,之后在浙江大学数学科学研究中心做博士后。 其研究领域是微分几何与几何分析,主要方向在于探究流形的曲率在流形的几何与拓扑中的应用。已经在Transaction A.M.S和中国科学等杂志上发表8篇文章,2017年“新世界数学奖”博士学位论文优秀奖,2018年获得中国博士后基金会博新人才支持计划。
邀请人:周恒宇
欢迎广大师生积极参与!