Global existence and asymptotic behavior for the classical solutions to a non-conservative compressible two-phase fluid model in a bounded domain

吴国春 (华侨大学)

发布日期:2021-06-07点击数:

报告人:吴国春 (华侨大学)

时间:2021年6月12日10:30开始

地点:理科楼LA106


摘要:In this paper, we investigate the global existence and uniqueness of classical solutions to the initial boundary value problem for a non-conservative compressible two-phase fluid model in a bounded domain with slip boundary. The global existence and uniqueness of classical solution are obtained when the initial data is near its equilibrium in $H^4(\Omega)$ by delicate energy methods. By a product, we also show the exponential convergence rates of the pressure and velocity in $H^3(\Omega)$. The key part of the paper is to capture the dissipative feature of solutions.


简介:吴国春,华侨大学副教授、硕士生导师,博士毕业于厦门大学,中国科学院数学与系统科学研究院博士后。研究方向为偏微分方程。


邀请人:穆春来   王华桥


欢迎广大师生积极参与!


关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。