Reverse Agmon Estimates

吴先超 (武汉理工大学)

发布日期:2021-06-07点击数:

报告人:吴先超 (武汉理工大学)

时间:2021年6月11日10:30开始

地点:数统学院LD402


摘要:We consider L^2-normalized eigenfunctions of the semiclassical Schrodinger operator on a compact manifold. The well-known Agmon-Lithner estimates are exponential decay estimates (ie. upper bounds)  for  eigenfunctions in the forbidden region. The decay rate is given in terms of the Agmon distance function which is associated with the degenerate Agmon metric with support in the forbidden region.The point of this talk is to prove a partial converse to the Agmon estimates (ie. exponential  lower bounds for the eigenfunctions) in terms of Agmon distance in the forbidden region under a  control assumption on eigenfunction mass in the allowable region arbitrarily close to its boundary. Also an improved estimate in the analytic setting will be presented.


简介:吴先超,武汉理工大学讲师。研究方向为半经典分析在偏微分方程中的应用,主要研究特征函数的渐近估计问题。2018年加拿大McGill大学博士毕业,已经在Annales Henri Poincare国际期刊上发表论文。


邀请人:陈鸿硕


欢迎广大师生积极参与!


关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。