Riemannian Inexact Newton-CG Methods for the Inverse Eigenvalues Problem for Nonnegative Matrices

白正简 (厦门大学)

发布日期:2020-07-09点击数:

报告人 :白正简 (厦门大学)

日期:2020年7月13日

时间:10:00

腾讯会议 ID652 822 207   (无密码)

https://meeting.tencent.com/s/JTSD3WXeAPe0)



报告摘要:In this talk, we consider the inverse eigenvalue problem for some nonnegative-related structured matrices, including nonnegative matrices and positive doubly stochastic matrices. We mainly focus on the study of fast numerical methods for constructing a nonnegative matrix or a positive doubly stochastic matrix from the prescribed realizable spectral data. By using the real Schur decomposition, the inverse eigenvalue problem is written as an under-determined nonlinear matrix equation on a matrix product manifold. Then we propose monotone and nonmonotone Riemannian inexact Newton-CG methods for solving the nonlinear matrix equation. The global and quadratic convergence of the proposed methods is established under some assumptions. We also report some numerical tests to illustrate the efficiency of the proposed methods.


报告人简介:白正简,厦门大学数学学院教授、博士生导师。博士毕业于香港中文大学,2004-2005年在新加坡国立大学从事博士后研究,教育部新世纪优秀人才支持计划入选者。主要研究方向包括数值线性代数、矩阵特征值反问题、非线性特征值问题以及矩阵流形上的优化算法等,已在SIAM J. Numer. Anal., SIAM J. Matrix Anal. Appl., SIAM J. Sci. Comput., Inverse Problems, Numerische Mathematik, Mech. Syst. Signal Process.等国际著名期刊上发表SCI收录学术论文30余篇。曾主持国家自然科学基金青年项目1项和面上项目2项,福建省杰出青年科学基金,教育部留学回国人员科研启动基金等项目,获得2009年度福建省科学技术奖二等奖和第二届Applied Numerical Algebra Prize,2014年在高等教育出版社合著出版学术专著《高等线性代数学》一部。更多信息见白教授主页http://math-faculty.xmu.edu.cn/display.aspx?tid=66



联系人:李寒宇



欢迎广大师生积极参与!




关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。