Systolic volume and triangulation complexity of 3-manifolds

发布日期:2019-10-08点击数:

报告人: 陈立志 (兰州大学)


日  期: 2019年1018


时  间: 13:00


地  点: 理科楼 LD202


摘  要: In this talk, we present the following result: the systolic volume of a closed aspherical 3-manifold is bounded below in terms of complexity. Systolic volume is the optimal constant in a systolic inequality. Gromov showed that the systolic volume is related to some topological invariants measuring complicatedness. In dimension three, complexity defined in terms of triangulation is a natural tool to evaluate topological complicatedness. Both systolic volume and complexity are important topological invariants, but the understanding of them is very poor. The work introduced in this talk is a new development to the research of these two invariants.


报告人简介陈立志博士,本科毕业于兰州大学数学系,博士毕业于Oklahoma State University, 研究方向为三维流形的几何与拓扑。


学院联系人:周恒宇


欢迎广大师生积极参与!


关于我们
重庆大学数学与统计学院的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。