学术活动
当前位置: 首页 >> 新闻中心 >> 学术活动 >> 正文

Stability and convergence of one and second order schemes for PDE with smooth and nonsmooth initial data

2018/09/06 13:49  点击:[]

报告人 (河南理工大学) 

 

 : 2018年9月17日  上午10:00—11:00

 

 : 理科楼 LA106

 

 : This report can be split into two parts. Firstly, we consider the stability  analysis of backward Euler scheme for the viscoelastic flow with smooth and nonsmooth initial data. Four kinds of numerical schemes are presented and the corresponding H2 stability results are provided. Secondly, we provide the stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with H2 and H1 initial data are considered. The almost unconditionally stable and convergence results are also provided. Finally, some numerical examples are provided to verify the established stability theory and convergence results with the smooth and nonsmooth initial data.

 

报告人简介:张通,男,博士,副教授,河南省青年骨干教师,河南理工大学二级“太行学者”. 长期从事有关不可压缩粘性流体问题理论和算法以及偏微分方程数值解的研究。 主持完成国家自然科学基金两项,巴西科技部海外优秀青年人才计划项目(A类)一项,河南省教育厅科学技术研究重点项目基金一项。现主持在研河南省青年骨干教师项目一项, 河南理工大学杰出青年基金一项。近五年在国内外知名学术期刊发表SCI论文40余篇。

 

学院联系人: 

 

欢迎广大师生积极参与!

上一条:Numerical methods for i... 下一条:On the classification o...

关闭

数学与统计学院 College of Mathematics and Statistics
(C)Copyright: College of Mathematics and Statistics All rights reserved
地址:重庆大学虎溪校区理科大楼D栋 邮编:401331