学术活动
当前位置: 首页 >> 新闻中心 >> 学术活动 >> 正文

Systolic volume and topological variants of 3-manifolds

2018/06/11 11:12  点击:[]

报告人: 陈立志 (兰州大学)

 

 : 2018年6月15日  15:00—16:00

 

 : 理科楼LA106

 

 : Given a closed 3-manifold, we define a Riemannian metric on it, then define its systole to be the shortest length of a noncontractible loop. The systolic ratio can be defined as ratio of volume and the third power of systole. We define systolic volume to be the infimum of systolic ratios over all Riemannian metrics on the given 3-manifold. The systolic volume is a topological invariant. In this talk, we are going to investigate several aspects of relation between systolic volume and other topological invariants of 3-manifolds. In particular, we are interested in the connection between systolic volume and complexity of a 3-manifold. 

 

报告人简介:陈立志博士,博士毕业于美国俄克拉荷马州立大学,南开大学博士后。现就职于兰州大学数学与统计学院。目前研究兴趣集中于三维流形的几何拓扑,systole 理论,极小曲面。 应我院周恒宇老师的研究,陈立志博士将于2018年6月14日到2018年6月18日在我院进行短期的学术交流。

 

学院联系人: 周恒宇

 

欢迎广大师生积极参与!

上一条:Mean Dimension and an E... 下一条:Mini-workshop on symple...

关闭

数学与统计学院 College of Mathematics and Statistics
(C)Copyright: College of Mathematics and Statistics All rights reserved
地址:重庆大学虎溪校区理科大楼D栋 邮编:401331