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R E G U L A T O R Y  B A C K G R O U N D

Inorder to protect public health, the United States Environmental
Protection Agency (USEPA) regulates the concentrations of many
contaminants in drinking water. For example, turbidity (visible
material in suspension) in the water supply is limited to 1 Turbidity

Unit. Turbidity is caused by particles or organic matter which run off into
the water from adjacent land, reside in the bottom of rivers, or are
formed from dead or live microorganisms in the river. Not only are the
particles unhealthy themselves, but they also carry many organic contam-
inants attached to them. Concentrations of these organic compounds are
also regulated. For example, polychlorinated biphenyl (PCB) cannot
exceed 0.5 micrograms/liter in drinking water. In order to ensure that
contaminated drinking water is not consumed by the public, health offi-
cials test the water at regular intervals and whenever there is a suspicion
of contamination. 

Keeping the Drinking Water Supply Safe 1

© COPYRIGHT 1998 COMAP     MAY BE PHOTOCOPIED FOR CLASSROOM USE



T H E  S I T U A T I O N

Thetowns of Freeburg and Cajunville use the Bluewater River
as a source of drinking water. Freeburg, the county seat,
has a water treatment plant which removes particles from
the water using chemical treatment followed by sedimen-

tation. Cajunville, being a poor farming community, only settles its water
and can produce potable water only when the concentration of sus-
pended particles is less than 40 mg/l.

Elevated levels of polychlorinated biphenyl (PCB), a cancer-causing com-
pound, have recently been discovered in the Bluewater River just
upstream of the Freeburg water treatment plant intake. It is believed that
they were discharged into the river by CARCINOGENS-R-US Inc. The
residents of Freeburg are very concerned about drinking this water.

State health officials studied the problem for four years. They found that
Freeburg can remove all of PCB which is attached to particles in the water
by their sedimentation basin. However, it cannot remove any PCB which
is dissolved in the water. Cajunville, being upstream of the discharge, is
unaffected by the PCB but cannot provide potable water when particle
concentrations exceed 40 mg/l. We know from physical chemistry that
the percentage of PCB which is dissolved in the water is directly related
to the particle concentration in the water. So, when the particle concen-
tration is high, the percentage of PCB which is dissolved is low. In this
case, Freeburg can remove most of the contaminant in its sedimentation
basins. However, at the same time, Cajunville cannot drink the water
because it cannot remove the particles.

We will investigate methods of statistical analysis which will permit us to
advise Freeburg and Cajunville about the potability of their water under
varying hydrologic conditions. In Part 1, we introduce Linear Regression
Models, Part 2 discusses Transformations to improve the estimates made
with naive linear regression models, and in Part 3 we apply these tech-
niques to the water quality problems of Freeburg and Cajunville. Finally,
in Part 4 we provide additional explanation about transformations.
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P A R T 1 : L I N E A R R E G R E S S I O N  M O D E L S

Supposewe have observations on N cases involving a predictor
variable x and a response variable y. These observations 

take the form (x1,y1),...,(xN,yN). If we believe that the variable y is
roughly a linear function of the variable x, then we may form the model 

(1)

where the xi’s and yi’s are the observed predictors and responses, β0 and
β1 are unknown parameters we wish to choose well, and the εis are
unobserved 

We may save space and effort by rewriting this in vector form as

(2)

Here are the column N-vectors formed from the corre-
sponding entities in (1) and    is the column N-vector of 1’s.When we 
choose β0 and β1 we choose a fitted linear summary 
then represents the vector of “errors” in our summary.

The question is, how to choose the parameters β0 and β1. The most pop-
ular method is to use the least squares criterion: i.e., choose β0 and β1
to minimize the distance squared Geometrically, this 

situation can be represented by Figure 1. The figure is drawn in R3 but 

represents a situation in RN.

Here the set of possible fitted linear summaries is the

plane M, and the problem is to minimize the distance from the vector 
to this plane. The picture makes clear that to choose the “best” model in the least
squares sense, we need to choose β0 and β1 so that
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is perpendicular to M. The depicted in the figure is in fact this 

orthogonal projection. For to be this projection we need the dot product of

with both to be 0; i.e.,

(3)
or in coordinate terms

(4)

These last equations are called the normal equations, and their solutions
provide the “least squares coefficients” From now on we will let 

be the optimal linear summary, or “fitted model”, and the

error vector, or residual vector will then be 

The length of the residual vector has an interesting use. If we let

(5)

then s is a standard measure of the spread of y about the least squares
line. For large well behaved data sets, 95% of the y values should fall
within 2s of the least squares line. For more detail on this you will need
to study a course in statistics covering linear regression. 

REQUIREMENT 1. 

Consider the data in Table 1 for the the variables x and y. Write down
the normal equations for this data set and solve them. Find and the 

residual vector e. What is s? Plot e against and e against x. What 
observations can you make about these plots?
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ŷ
 
r
y   

r
y − ŷ
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x 1 2 4 5 7 8 9 10

y –1.3 1.7 6.7 10.1 8.8 11.0 16.1 12.8

Table 1.



P A R T  2 :  T R A N S F O R M A T I O N S

Theabove methods work very well when we simply want a
linear summary model. But when we assume that the true
state of nature consists of y being a function of x with
added noise, the situation changes somewhat, even in the

case that y is a linear function of x with added noise. When we formally
assume that the εi terms are random noise, then classical theory (the
Gauss Markov Theorem) tells us that the least squares method described
above is the optimal procedure when y is a linear function of x plus
evenly scattered noise. But if y is a linear function of x plus noise the
magnitude of whose scatter changes in some systematic fashion, then
the normal equations yield suboptimal estimates. Thus, when we deter-
mine that the magnitude of the scatter varies in some systematic fashion,
we need to transform y or x to bring the residual terms into closer con-
formity with the Gauss-Markov assumptions of random evenly scattered
noise. 

We need tools to tell us when such model change is necessary, and what
change to make in such a case. In practice we proceed graphically: we
look at a scatterplot of the residuals versus x or .We judge from the
plot whether the error terms have an even random scatter about 0, or
whether there is some clear dependence of that scatter on x or . From
the same plot we can also check whether there is remaining higher order,
curved dependence of the residuals on x or . There will be no further
linear dependence of the actual residuals (as opposed to the magnitude
of scatter) on x or since such linear dependence has been aborbed into
the model. Below are examples of such scatterplots. All the depicted plots
except the one labeled “Even Scatter” indicate a need to transform.

  ŷ

  ŷ

  ŷ

ŷ

Keeping the Drinking Water Supply Safe 5

© COPYRIGHT 1998 COMAP     MAY BE PHOTOCOPIED FOR CLASSROOM USE



In case we do need to transform, how do we do it? We usually choose a
transformation from the following Box-Cox family of power transforma-
tions. That is for the response variable will replace y by yλ where λ is
some real number. (If some of the y values are negative and λ is frac-
tional we will translate all y values by a common constant to make them
all positive.)

We need to be aware of several additional things here. First, in this con-
text the transformation y0 is interpreted to be ln(y). Second, in the
interests of getting a model which has some chance of interpretation, we
will usually choose λ to be a half-integer. Also, we choose λ in the
interval [-2,2], as more extreme powers result in unstable transforma-
tions. Finally, we may need to try more than one half integer before we
arrive at the best looking residual plot. If we are transforming y we cor-
rect a right fan by taking a larger positive power of y than we have, and a
left fan by a smaller power (or negative power) of y than we have. If we
are transforming x we do just the opposite. To remember this the fol-
lowing  “ladder of transformations” is helpful.

REQUIREMENT 1.

Consider the data in Table 2 for the variables x and y. Carry out a
regression of y on x, and plot the residuals versus . Is a transformation
indicated? If so, select a transformation yλ bringing the residual plot into
decent shape.

(As always, consider for λ only half-integers in the interval [-2,2].)

ŷ
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y−2 y−1.5

x+2 x+1.5

y−1 y−0.5

x+1 x+0.5

ln ( y) y+0.5

ln (x ) x−0.5

y+1 y+1.5

x−1 x−1.5

y+2

x−2

Ladder of Transformations

To correct a right fan move in this direction

To correct a left fan move in this direction

x 5.7 5.8 5.8 5.8 6.4 7.3 8.1 8.8 9.4 9.5
y 5.1 3.4 9.8 6.5 6.8 7.9 7.1 8.5 9.2 11.3

x 11.4 11.5 11.8 13.7 14.5 14.6 14.6 15.0 15.9 16.4
y 9.9 9.7 8.3 13.9 11.0 7.8 15.7 9.4 13.2 13.4

x 17.7 18.9 19.7 19.7 20.2 21.8 23.1 23.6 24.8 26.4
y 13.2 18.7 4.8 16.7 19.2 29.4 6.7 18.8 31.6 15.2

x 26.6 27.3 29.6 30.2 31.8 32.0 32.1 33.3 33.7 34.2
y 19.9 11.4 27.3 10.1 22.2 30.5 32.6 29.9 32.4 16.9Table 2.



PART 3: CAJUNVILLE AND FREEBURG: A CASE OF THREATENED WATER SUPPLIES?

Now,let's apply our knowledge of regression to the
drinking water problems of Freeburg and
Cajunville. We want to know if the water is safe 
for the townspeople to drink. We will make this 
determination under two conditions: first during a

period of little rain when the river is low, and, second, soon after rain-
showers from a major storm have created flood conditions in the
Bluewater River Valley. We want to determine the concentration of sus-
pended solids in Bluewater River during each of these periods. Using this
information, we will be able to advise the townspeople when their
drinking water should be tested for contaminants. 

We have collected two data sets to help us answer this question.

We will make use of United States Geological Survey (USGS) data which
have been collected for the Bluewater River. The USGS has recorded flow
rate and suspended solids concentration on 90 occasions. These data are
reproduced in Table 3.

We also have collected USGS data with simultaneous observations of flow
rate and river depth (Table 4).

From state health officials we have learned that the total concentration of
PCB (the dissolved plus the attached phase of PCB) in Bluewater River is
0.75 µg/1. Also, we have located an equation from physical chemistry
which enables us to compute the fraction of total PCB concentration
which is in the dissolved form. Using this equation, we can determine
how much PCB is dissolved in water at different levels of suspended par-
ticle concentrations. 

(6)

Recall from The Situation section that PCB in the dissolved phase cannot
be removed from Freeburg's drinking water but that Freeburg's sedimen-
tation basin can remove PCB attached to suspended particles.

REQUIREMENT 1. 

Using the data in Table 3, solve the normal equations for a linear regres-
sion of the response variable, suspended solids concentration, on the
predictor variable, flow rate. What are the coefficients,
Plot the residuals vs. . Discuss the pattern, if any, in this plot. 
Does there seem to be non-constant variance, or non-linearity in the
residuals? If so, find an appropriate transformation for y and/or x, and
solve the normal equations on the transformed data set. What are the
values of for the transformed data set ? Find s (see Equation 5
in Part 1).

β̂0 and β̂1

ŷ

β̂0 and β̂1 ?

  
fraction dissolved = 1 − 0.16 ×  suspended solids conc

1+ 0.16 ×  suspended solids conc
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REQUIREMENT 2. 

Actually, flow is not typically measured by the USGS. Instead, the depth
of the water (called the “stage” by hydrologists) is measured and regres-
sion equations are developed to predict flow as a function of stage. From
the data given in Table 4, find a linear regression model and the values of

which we can use to predict flow at Freeburg and Cajunville as
a function of river stage. 

REQUIREMENT 3

a. We suppose the water depth is measured at 14.5 feet during a dry
period. Use the two regression equations you developed in Requirements
1 and 2 to estimate the concentration of suspended solids in the water.

b. Your model giving flow as a function of depth is very accurate; however,
your model giving sediment concentration as a function of flow is subject
to considerable uncertainty. We can be 90% sure that the true sediment
concentration is no more than the estimated concentration plus 1.3s and
also 90% sure that the true concentration is no less than the estimate
minus 1.3s. Compute these upper and lower bounds of the suspended
solids concentrations.

REQUIREMENT 4

a. You are needed to give some advice to public health officials in
Cajunville. Compare the upper bound you found for suspended particle
concentrations with the 40 mg/l maximum that the Cajunville's water
treatment plant can remove. Is your confidence bound greater? If so,
what recommendation would you make to the public health officials with
regard to testing Cajunville's water when the river depth is 14.5 feet?

b. Suppose that an unusually wet spring creates high water in the river. The
depth is measured at 25 feet. What recommendation would you make to
the public health officials now?

c. Find the median value of the measured flow from Table 4. Using this as
the “normal” flow rate in the river, verify that under normal conditions,
Cajunville's water supply is safe. 

β̂0 and β̂1
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REQUIREMENT 5

a. Now, consider the case of Freeburg. When the water depth is 14.5 feet,
use the lower bound on the suspended sediment concentration in
Equation 6 to determine the fraction of PCB which is dissolved. Note that
we use the lower bound here instead of upper bound because this is the
worst case scenario; the lower the suspended solids concentration, the
greater the percentage of PCB which is dissolved and untreatable by
Freeburg.

b. Use the value that you computed in part a to determine the worst case
value for the PCB concentration when the river depth is 14.5 feet. What
recommendation would you make to public health officials regarding
testing the potable water supply of Freeburg?

c. What recommendation would you make when the river depth reaches 25
feet?

d. Verify that under normal flow conditions, Freeburg's drinking water
meets the USEPA's drinking water standards.

REQUIREMENT 6. 

Discuss the difference in the hydrologic threats to Cajunville's and
Freeburg's water supply.

Keeping the Drinking Water Supply Safe 9

© COPYRIGHT 1998 COMAP     MAY BE PHOTOCOPIED FOR CLASSROOM USE



Interdisciplinary Lively Applications Project10

© COPYRIGHT

4065 11
36039 26
11016 16

2866 11
19151 20
17803 19
27282 23
38134 26
17691 19
14793 18

9229 15
14841 18

8133 15
17439 19

31732 24
28775 23
36724 26

7765 13
34357 25
11320 16
15499 18
44922 28
33268 25
42254 27
18065 20

4845 12
17803 19

6579 13

11095 17
13081 17
32229 24

3398 11
8624 15

42663 27
11066 16

2515 10
5083 12

34201 25
14809 18
44810 28

flow rate river depth flow rate river depth flow rate river depth 
(ft3/sec) (ft) (ft3/sec) (ft) (ft3/sec) (ft)

96 17400
97 26200

105 27600
47 23500
28 18700
23 16600
26 16500
11 14300
11 11600
27 11600

7 11300
6 10200
5 8840
5 8360
5 7760
6 7570
5 7760
4 7830
3 10000

14 12900
19 17600
77 28700
44 25900
16 19900

9 18900
7 18300
8 17700
9 19600
9 21600
9 24500

12 25500
8 23000
5 21100
5 18800
3 16800
5 15700
4 15300
5 15500
3 14300
5 13400
4 13700
3 14700
6 14600
7 13900
5 14000
6 15100
6 15200
6 14900
7 14900
6 15800
5 16300
7 17700

23 18200
40 19600
50 28900

107 36600
40 31500
16 27200

9 23800
9 21200

8 20000
12 19400

8 18900
8 18100
7 12800
9 10700
7 9980
5 9260
7 9050

38 8500
19 6400

5 7070
6 7130
5 6880
5 6520
5 6520
6 5100
6 4040
5 4890
5 5000
7 5320

21 8290
11 11100
11 9690

8 8030
14 9400
27 11800
13 12100

9 11600
7 10300

suspended flow rate suspended flow rate suspended flow rate
part.(mg/l) (ft3/sec) part.(mg/l) (ft3/sec) part.(mg/l) (ft3/sec)

Table 3

Table 4



PART 4 (OPTIONAL): WHY WE TRANSFORM—BEST LINEAR UNBIASED ESTIMATORS

Themathematical rationale for our pursuit of residual plots
with even scatter is the Gauss-Markov Theorem. To bring
this to bear on our situation, we now assume that in
model (1) or (2) above the error terms εi are independent

random variables. We assume that for each i the expectation E(ε i)=0,
and we denote the variance v(ε i) by vi The mathematical formulation of
evenly scattered noise is that all the vi’s are the same.

A linear estimator of β1 is any linear combination =Σiciyi of the
observed yi’s. The ci’s are allowed to depend on the xi’s, since, as is cus-
tomary, we take the yi’s as random and the xi’s as “known”, not random.
The formulas for E( ) and V( ), easily derived from basic principles of
probability:

E( )=Σici(β0+β1xi)=(Σici)β0+(Σicixi)β1 (5)

V( )=Σici
2vi (6)

We call unbiased if we can show that E( )=β1 no matter what the
true value of β1. From (5) we see that this is so, exactly when Σici = 0
and Σicixi= 1. In the unbiased case the expected squared error of (from

its target) is the same as the variance of . So from among unbiased
linear estimators we seek the one with minimum variance. That is, to
choose the best linear unbiased estimator, we want to choose the ci’s to
minimize Σici

2vi subject to the conditions 

Σici=0 and Σicixi=1. (7)

The Gauss-Markov Theorem says that when all the vi’s are the same,
then the least squares estimators are also the best linear unbiased estima-
tors (i.e., minimum variance linear unbiased.) We also know that when
the vi’s vary, then the least squares estimators are not the minimum vari-
ance linear unbiased estimators. You will be asked below to work
through two examples—in the first the error variances are all the same,
and in the second the error variances vary by case. You will see that the
least squares estimate agrees with the optimal estimate in the first case
but not the second.

REQUIREMENT 1.

Consider the data set in Table 1 of Part 1 above. Assuming that all vari-
ances vi = v are the same, then to minimize v( ) we want to minimize
Σici

2. Use Lagrange multipliers to determine the ci’s which minimize Σici
2

subject to conditions (7) above. Compare the unbiased linear estimator
Σiciyi with the least squares estimator .β̂1

β̃1

β̃1

β̃

β̃1β̃1

β̃1

β̃1

β̃1β̃1

β̃1
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REQUIREMENT 2. 

Now consider the data set in Table 1 of Part 1 above. Assuming that for
some unknown positive constant k we have vi=kxi for each i (so that the
vi’s are varying), we now want to minimize Σici

2xi. Determine the ci’s
which minimize Σici

2xi subject to conditions (7) above. Compare Σiciyi
with the least squares estimator .β̂1

Interdisciplinary Lively Applications Project12

© COPYRIGHT 1998 COMAP     MAY BE PHOTOCOPIED FOR CLASSROOM USE



S O L U T I O N S

PART 1. 

Requirement 1.

n=8, Σx =46, Σx2 = 340, Σy=65.9, Σ xy=501.9. These are enough to 
write down the normal equations. We get =–1.1281, =1.6288. 

We calculate and e and get s=2.2292. Figure 1 shows a plot of the
residuals e versus x.

ŷ

β̂1β̂0
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PART 2. 

Requirement 1. 

For y untransformed, we get =-1.968,

=0.69946 For response variable (y+15).5 we get 

=1.8681, =0.4666. See Figure 2. for residual plot, which shows a
right fan. Either y0.5 or ln y represents an acceptable transformation.

β̂1β̂0

β̂1

 β̂0
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PART 3

Requirement 1. 

Using ln y as the dependent variable and 1000x

as the independent variable, we get the prediction equation:

lny = 1.2061 + 0.0727x (1)

with s = 0.7178. 

Requirement 2. 

Using ln y as the dependent variable and x is the independent variable,
we get the prediction equation:

lny = 6.83 + 0.146x (2)

Requirement 3. 

The estimated concentration is 8.6mg/l. The upper and lower bounds are
14.9mg/l and 2.3mg/l.

Requirement 4. 

a. No need to test the water. 

b. At 25 feet the upper and lower suspended sediment concentrations are
113.0mg/l and 17.5mg/l, respectively. Therefore, under high stage condi-
tions, the water should be tested at Cajunville. 

c. The median flow value is 16290 cfs. The upper bound on the suspended
particle concentration is 27.8mg/l —therefore under normal flow
Cajunville's water supply is potable. 

Requirement 5. 

a. At 2.3mg/l 73% of the PCB is dissolved. 

b. The worst case occurs if we have 2.3mg/l giving us 73% of the PCB in
the dissolved phase. This yields a dissolved concentration of 0.55
µgrams/l. Since this value is greater than 0.5 µgrams/l, the water should
be tested in Freeburg. 

c. At 25 feet, the worst case is 0.75 µgrams/l at 0.26% dissolved, or
0.20µgrams/l dissolved. At this level, Freeburg need not test the water.

d. Under normal flow conditions, the worst case concentration is
0.44µgrams per liter so the water is potable for Freeburg.

Keeping the Drinking Water Supply Safe 15
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PART 4. 

Requirement 1.

Let be the optimal vector we seek. From the theory of Lagrange 

multipliers, for a,b to be determined. Substituting this into 

the side conditions and we get the equations

. Solving for a,b we then get ,

and we check that is the same as the least squares estimate ,

which we got in Part 1.

Requirement 2. 

For each i let di=cixi
.5, so that ci=dix i

-.5. Also let ui=x i
-.5 and Vi=x i

-.5 for each
i. We want to minimize Σci

2xi subject to But this 

translates to minimize Σ di
2 subject to Reasoning

as in Part 4 Requirement 1 we see that for a, b undeter-
mined. Substituting this into the side conditions we are led to 

Solving for a, b we get 

Then we get as our best linear unbiased
estimate for β1, and this is of course different from the least squares 
estimate.

   
r
c ⋅ r

y = 1.8541   
r
d and then 

r
c.

   
v
u ⋅ r

ua + r
u ⋅ rvb = 0 and 

r
v ⋅ r

ua + r
v ⋅ rvb = 1.

  
r
d = a

r
u + b

v
v

   
r
d ⋅ r

u = 0 and 
r
d ⋅ rv = 1.

   
r
c ⋅

r
1 = 0 and 

r
c ⋅ r

x = 1.

β̂1  
r
c ⋅ r

y

  
r
c  na + Σxb = 0 and Σxa + Σx2b = 1

   
r
c ⋅

r
1 = 0 and 

r
c ⋅ r

x = 1
   
r
c = a

r
1 + b

r
1

  
r
c
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